编写函数装饰器
本节主要介绍编写函数装饰器的相关内容。
跟踪调用
如下代码定义并应用一个函数装饰器,来统计对装饰的函数的调用次数,并且针对每一次调用打印跟踪信息。
class tracer:
def __init__(self,func):
self.calls = 0
self.func = func
def __call__(self,*args):
self.calls += 1
print(‘call %s to %s’ %(self.calls, self.func.__name__))
self.func(*args)
@tracer
def spam(a, b, c):
print(a + b + c)
这是一个通过类装饰的语法写成的装饰器,测试如下:
>>> spam(1,2,3)
call 1 to spam
6
>>> spam(‘a’,’b’,’c’)
call 2 to spam
abc
>>> spam.calls
2
>>> spam
运行的时候,tracer类和装饰的函数分开保存,并且拦截对装饰的函数的随后的调用,以便添加一个逻辑层来统计和打印每次调用。
装饰之后,spam实际上是tracer类的一个实例。
@装饰器语法避免了直接地意外调用最初的函数。考虑如下所示的非装饰器的对等代码:
calls = 0
def tracer(func,*args):
global calls
calls += 1
print(‘call %s to %s’%(calls,func.__name__))
func(*args)
def spam(a,b,c):
print(a+b+c)
测试如下:
?
1
2
3
4
5
>>> spam(1,2,3)
6
>>> tracer(spam,1,2,3)
call 1 to spam
6
这一替代方法可以用在任何函数上,且不需要特殊的@语法,但是和装饰器版本不同,它在代码中调用函数的每个地方都需要额外的语法。尽管装饰器不是必需的,但是它们通常是最为方便的。
扩展——支持关键字参数
下述代码时前面例子的扩展版本,添加了对关键字参数的支持:
class tracer:
def __init__(self,func):
self.calls = 0
self.func = func
def __call__(self,*args,**kargs):
self.calls += 1
print(‘call %s to %s’ %(self.calls, self.func.__name__))
self.func(*args,**kargs)
@tracer
def spam(a, b, c):
print(a + b + c)
@tracer
def egg(x,y):
print(x**y)
测试如下:
>>> spam(1,2,3)
call 1 to spam
6
>>> spam(a=4,b=5,c=6)
call 2 to spam
15
>>> egg(2,16)
call 1 to egg
65536
>>> egg(4,y=4)
call 2 to egg
256
也可以看到,这里的代码同样使用【类实例属性】来保存状态,即调用的次数self.calls。包装的函数和调用计数器都是针对每个实例的信息。
使用def函数语法写装饰器
使用def定义装饰器函数也可以实现相同的效果。但是有一个问题,我们也需要封闭作用域中的一个计数器,它随着每次调用而更改。我们可以很自然地想到全局变量,如下:
calls = 0
def tracer(func):
def wrapper(*args,**kargs):
global calls
calls += 1
print(‘call %s to %s’%(calls,func.__name__))
return func(*args,**kargs)
return wrapper
@tracer
def spam(a,b,c):
print(a+b+c)
@tracer
def egg(x,y):
print(x**y)
这里calls定义为全局变量,它是跨程序的,是属于整个模块的,而不是针对每个函数的,这样的话,对于任何跟踪的函数调用,计数器都会递增,如下测试:
>>> spam(1,2,3)
call 1 to spam
6
>>> spam(a=4,b=5,c=6)
call 2 to spam
15
>>> egg(2,16)
call 3 to egg
65536
>>> egg(4,y=4)
call 4 to egg
256
可以看到针对spam函数和egg函数,程序用的是同一个计数器。
那么如何实现针对每一个函数的计数器呢,我们可以使用python3中新增的nonlocal语句,如下:
def tracer(func):
calls = 0
def wrapper(*args,**kargs):
nonlocal calls
calls += 1
print(‘call %s to %s’%(calls,func.__name__))
return func(*args,**kargs)
return wrapper
@tracer
def spam(a,b,c):
print(a+b+c)
@tracer
def egg(x,y):
print(x**y)
spam(1,2,3)
spam(a=4,b=5,c=6)
egg(2,16)
egg(4,y=4)
运行如下:
call 1 to spam
6
call 2 to spam
15
call 1 to egg
65536
call 2 to egg
256
这样,将calls变量定义在tracer函数内部,使之存在于一个封闭的函数作用域中,之后通过nonlocal语句来修改这个作用域,修改这个calls变量。如此便可以实现我们所需求的功能。
陷阱:装饰类方法
【注意,使用类编写的装饰器不能用于装饰某一类中带self参数的的函数,这一点在python装饰器基础中介绍过】
即如果装饰器是如下使用类编写的:
class tracer:
def __init__(self,func):
self.calls = 0
self.func = func
def __call__(self,*args,**kargs):
self.calls += 1
print(‘call %s to %s’%(self.calls,self.func.__name__))
return self.func(*args,**kargs)
当它装饰如下在类中的方法时:
class person:
def __init__(self,name,pay):
self.name = name
self.pay = pay
@tracer
def giveraise(self,percent):
self.pay *= (1.0 + percent)
这时程序肯定会出错。问题的根源在于,tracer类的__call__方法的self——它是一个tracer实例,当我们用__call__把装饰方法名重绑定到一个类实例对象的时候,python只向self传递了tracer实例,它根本没有在参数列表中传递person主体。此外,由于tracer不知道我们要用方法调用处理的person实例的任何信息,没有办法创建一个带有一个实例的绑定的方法,所以也就没有办法正确地分配调用。
这时我们只能通过嵌套函数的方法来编写装饰器。
计时调用
下面这个装饰器将对一个装饰的函数的调用进行计时——既有针对一次调用的时间,也有所有调用的总的时间。
import time
class timer:
def __init__(self,func):
self.func = func
self.alltime = 0
def __call__(self,*args,**kargs):
start = time.clock()
result = self.func(*args,**kargs)
elapsed = time.clock()- start
self.alltime += elapsed
print(‘%s:%.5f,%.5f’%(self.func.__name__,elapsed,self.alltime))
return result
@timer
def listcomp(n):
return [x*2 for x in range(n)]
@timer
def mapcall(n):
return list(map((lambda x :x*2),range(n)))
result = listcomp(5)
listcomp(50000)
listcomp(500000)
listcomp(1000000)
print(result)
print(‘alltime = %s’%listcomp.alltime)
print(”)
result = mapcall(5)
mapcall(50000)
mapcall(500000)
mapcall(1000000)
print(result)
print(‘alltime = %s’%mapcall.alltime)
print(‘map/comp = %s ‘% round(mapcall.alltime/listcomp.alltime,3))
运行结果如下:
listcomp:0.00001,0.00001
listcomp:0.00885,0.00886
listcomp:0.05935,0.06821
listcomp:0.11445,0.18266
[0, 2, 4, 6, 8]
alltime = 0.18266365607537918
mapcall:0.00002,0.00002
mapcall:0.00689,0.00690
mapcall:0.08348,0.09038
mapcall:0.16906,0.25944
[0, 2, 4, 6, 8]
alltime = 0.2594409060462425
map/comp = 1.42
这里要注意的是,map操作在python3中返回一个迭代器,所以它的map操作不能和一个列表解析的工作直接对应,即实际上它并不花时间。所以要使用list(map())来迫使它像列表解析那样构建一个列表
添加装饰器参数
有时我们需要装饰器来做一个额外的工作,比如提供一个输出标签并且可以打开或关闭跟踪消息。这就需要用到装饰器参数了,我们可以使用装饰器参数来制定配置选项,这些选项可以根据每个装饰的函数而编码。例如,像下面这样添加标签:
def timer(label = ”):
def decorator(func):
def oncall(*args):
…
print(label,…)
return oncall
return decorator
@timer(‘==>’)
def listcomp(n):…
我们可以将这样的结果用于计时器中,来允许在装饰的时候传入一个标签和一个跟踪控制标志。比如,下面这段代码:
import time
def timer(label= ”, trace=true):
class timer:
def __init__(self,func):
self.func = func
self.alltime = 0
def __call__(self,*args,**kargs):
start = time.clock()
result = self.func(*args,**kargs)
elapsed = time.clock() – start
self.alltime += elapsed
if trace:
ft = ‘%s %s:%.5f,%.5f’
values = (label,self.func.__name__,elapsed,self.alltime)
print(format % value)
return result
return timer
这个计时函数装饰器可以用于任何函数,在模块中和交互模式下都可以。我们可以在交互模式下测试,如下:
>>> @timer(trace = false)
def listcomp(n):
return [x * 2 for x in range(n)]
>>> x = listcomp(5000)
>>> x = listcomp(5000)
>>> x = listcomp(5000)
>>> listcomp
>>> listcomp.alltime
0.0011475424533080223
>>>
>>> @timer(trace=true,label=’\t=>’)
def listcomp(n):
return [x * 2 for x in range(n)]
>>> x = listcomp(5000)
=> listcomp:0.00036,0.00036
>>> x = listcomp(5000)
=> listcomp:0.00034,0.00070
>>> x = listcomp(5000)
=> listcomp:0.00034,0.00104
>>> listcomp.alltime
0.0010432902706075842
有关python编写函数装饰器相关知识小编就给大家介绍到这里,希望对大家有所帮助!