最近要做个检查文章原创都的功能,用PHP写了隔逐行匹配的像是都计算,用的similar_text,效率很低,就查看了下python的相识度算法,如下,分享给大家
欧几里德距离
几个数据集之间的相似度一般是基于每对对象间的距离计算。最常用的当然是欧几里德距离,其公式为:
#-*-coding:utf-8 -*-
#计算欧几里德距离:
def euclidean(p,q):
#如果两数据集数目不同,计算两者之间都对应有的数
same = 0
for i in p:
if i in q:
same +=1
#计算欧几里德距离,并将其标准化
e = sum([(p[i] - q[i])**2 for i in range(same)])
return 1/(1+e**.5)
我们用数据集可以去算一下:
p = [1,3,2,3,4,3]
q = [1,3,4,3,2,3,4,3]
print euclidean(p,q)
得出结果是:0.261203874964
皮尔逊相关度
几个数据集中出现异常值的时候,欧几里德距离就不如皮尔逊相关度‘稳定’,它会在出现偏差时倾向于给出更好的结果。其公式为:
-*-coding:utf-8 -*-
#计算皮尔逊相关度:
def pearson(p,q):
#只计算两者共同有的
same = 0
for i in p:
if i in q:
same +=1
n = same
#分别求p,q的和
sumx = sum([p[i] for i in range(n)])
sumy = sum([q[i] for i in range(n)])
#分别求出p,q的平方和
sumxsq = sum([p[i]**2 for i in range(n)])
sumysq = sum([q[i]**2 for i in range(n)])
#求出p,q的乘积和
sumxy = sum([p[i]*q[i] for i in range(n)])
# print sumxy
#求出pearson相关系数
up = sumxy - sumx*sumy/n
down = ((sumxsq - pow(sumxsq,2)/n)*(sumysq - pow(sumysq,2)/n))**.5
#若down为零则不能计算,return 0
if down == 0 :return 0
r = up/down
return r
用同样的数据集去计算:
p = [1,3,2,3,4,3]
q = [1,3,4,3,2,3,4,3]
print pearson(p,q)
得出结果是:0.00595238095238
曼哈顿距离
曼哈顿距离是另一种相似度计算方法,不是经常需要,但是我们仍然学会如何用python去实现,其公式为:
#-*-coding:utf-8 -*-
#计算曼哈顿距离:
def manhattan(p,q):
#只计算两者共同有的
same = 0
for i in p:
if i in q:
same += 1
#计算曼哈顿距离
n = same
vals = range(n)
distance = sum(abs(p[i] - q[i]) for i in vals)
return distance
用以上的数据集去计算:
p = [1,3,2,3,4,3]
q = [1,3,4,3,2,3,4,3]
print manhattan(p,q)
得出结果为4
Jaccard系数
当数据集为二元变量时,我们只有两种状态:0或者1。
这个时候以上的计算相似度的方法就无法派上用场,于是我们引出Jaccard系数,这是一个能够表示两个数据集都是二元变量(也可以多元)的相似度的指标,其公式为:
#-*-coding:utf-8 -*-
# 计算jaccard系数
def jaccard(p,q):
c = [a for i in p if v in b]
return float(len(c))/(len(a)+len(b)-len(b))
#注意:在使用之前必须对两个数据集进行去重
我们用一些特殊的数据集去测试一下:
p = ['shirt','shoes','pants','socks']
q = ['shirt','shoes']
print jaccard(p,q)
得出结果是:0.5