零基础写python爬虫之使用scrapy框架编写爬虫

网络爬虫,是在网上进行数据抓取的程序,使用它能够抓取特定网页的html数据。虽然我们利用一些库开发一个爬虫程序,但是使用框架可以大大提高效率,缩短开发时间。scrapy是一个使用python编写的,轻量级的,简单轻巧,并且使用起来非常的方便。使用scrapy可以很方便的完成网上数据的采集工作,它为我们完成了大量的工作,而不需要自己费大力气去开发。

首先先要回答一个问题。
问:把网站装进爬虫里,总共分几步?
答案很简单,四步:
新建项目 (project):新建一个新的爬虫项目
明确目标(items):明确你想要抓取的目标
制作爬虫(spider):制作爬虫开始爬取网页
存储内容(pipeline):设计管道存储爬取内容

好的,基本流程既然确定了,那接下来就一步一步的完成就可以了。

1.新建项目(project)
在空目录下按住shift键右击,选择“在此处打开命令窗口”,输入一下命令:

代码如下:

scrapy startproject tutorial

其中,tutorial为项目名称。
可以看到将会创建一个tutorial文件夹,目录结构如下:

代码如下:

tutorial/
scrapy.cfg
tutorial/
__init__.py
items.py
pipelines.py
settings.py
spiders/
__init__.py

下面来简单介绍一下各个文件的作用:
scrapy.cfg:项目的配置文件
tutorial/:项目的python模块,将会从这里引用代码
tutorial/items.py:项目的items文件
tutorial/pipelines.py:项目的pipelines文件
tutorial/settings.py:项目的设置文件
tutorial/spiders/:存储爬虫的目录

2.明确目标(item)
在scrapy中,items是用来加载抓取内容的容器,有点像python中的dic,也就是字典,但是提供了一些额外的保护减少错误。
一般来说,item可以用scrapy.item.item类来创建,并且用scrapy.item.field对象来定义属性(可以理解成类似于orm的映射关系)。
接下来,我们开始来构建item模型(model)。
首先,我们想要的内容有:
名称(name)
链接(url)
描述(description)

修改tutorial目录下的items.py文件,在原本的class后面添加我们自己的class。
因为要抓dmoz.org网站的内容,所以我们可以将其命名为dmozitem:

代码如下:

# define here the models for your scraped items
#
# see documentation in:
# http://doc.scrapy.org/en/latest/topics/items.html

from scrapy.item import item, field

class tutorialitem(item):
# define the fields for your item here like:
# name = field()
pass

class dmozitem(item):
title = field()
link = field()
desc = field()

刚开始看起来可能会有些看不懂,但是定义这些item能让你用其他组件的时候知道你的 items到底是什么。
可以把item简单的理解成封装好的类对象。

3.制作爬虫(spider)

制作爬虫,总体分两步:先爬再取。
也就是说,首先你要获取整个网页的所有内容,然后再取出其中对你有用的部分。
3.1爬
spider是用户自己编写的类,用来从一个域(或域组)中抓取信息。
他们定义了用于下载的url列表、跟踪链接的方案、解析网页内容的方式,以此来提取items。
要建立一个spider,你必须用scrapy.spider.basespider创建一个子类,并确定三个强制的属性:
name:爬虫的识别名称,必须是唯一的,在不同的爬虫中你必须定义不同的名字。
start_urls:爬取的url列表。爬虫从这里开始抓取数据,所以,第一次下载的数据将会从这些urls开始。其他子url将会从这些起始url中继承性生成。
parse():解析的方法,调用的时候传入从每一个url传回的response对象作为唯一参数,负责解析并匹配抓取的数据(解析为item),跟踪更多的url。

这里可以参考宽度爬虫教程中提及的思想来帮助理解,教程传送:[java] 知乎下巴第5集:使用httpclient工具包和宽度爬虫。
也就是把url存储下来并依此为起点逐步扩散开去,抓取所有符合条件的网页url存储起来继续爬取。

下面我们来写第一只爬虫,命名为dmoz_spider.py,保存在tutorial\spiders目录下。
dmoz_spider.py代码如下:

代码如下:

from scrapy.spider import spider

class dmozspider(spider):
name = “dmoz”
allowed_domains = [“dmoz.org”]
start_urls = [
“http://www.dmoz.org/computers/programming/languages/python/books/”,
“http://www.dmoz.org/computers/programming/languages/python/resources/”
]

def parse(self, response):
filename = response.url.split(“/”)[-2]
open(filename, ‘wb’).write(response.body)

allow_domains是搜索的域名范围,也就是爬虫的约束区域,规定爬虫只爬取这个域名下的网页。
从parse函数可以看出,将链接的最后两个地址取出作为文件名进行存储。
然后运行一下看看,在tutorial目录下按住shift右击,在此处打开命令窗口,输入:

代码如下:

scrapy crawl dmoz

运行结果如图:

报错了:
unicodedecodeerror: ‘ascii’ codec can’t decode byte 0xb0 in position 1: ordinal not in range(128)
运行第一个scrapy项目就报错,真是命运多舛。
应该是出了编码问题,谷歌了一下找到了解决方案:
在python的lib\site-packages文件夹下新建一个sitecustomize.py:

代码如下:

import sys
sys.setdefaultencoding(‘gb2312’)

再次运行,ok,问题解决了,看一下结果:

最后一句info: closing spider (finished)表明爬虫已经成功运行并且自行关闭了。
包含 [dmoz]的行 ,那对应着我们的爬虫运行的结果。
可以看到start_urls中定义的每个url都有日志行。
还记得我们的start_urls吗?
http://www.dmoz.org/computers/programming/languages/python/books
http://www.dmoz.org/computers/programming/languages/python/resources
因为这些url是起始页面,所以他们没有引用(referrers),所以在它们的每行末尾你会看到 (referer: )。
在parse 方法的作用下,两个文件被创建:分别是 books 和 resources,这两个文件中有url的页面内容。

那么在刚刚的电闪雷鸣之中到底发生了什么呢?
首先,scrapy为爬虫的 start_urls属性中的每个url创建了一个 scrapy.http.request 对象 ,并将爬虫的parse 方法指定为回调函数。
然后,这些 request被调度并执行,之后通过parse()方法返回scrapy.http.response对象,并反馈给爬虫。

3.2取
爬取整个网页完毕,接下来的就是的取过程了。
光存储一整个网页还是不够用的。
在基础的爬虫里,这一步可以用正则表达式来抓。
在scrapy里,使用一种叫做 xpath selectors的机制,它基于 xpath表达式。
如果你想了解更多selectors和其他机制你可以查阅资料:点我点我

这是一些xpath表达式的例子和他们的含义
/html/head/title: 选择html文档元素下面的 标签。
/html/head/title/text(): 选择前面提到的 元素下面的文本内容
//td: 选择所有 元素
//p[@]: 选择所有包含 属性的p 标签元素
以上只是几个使用xpath的简单例子,但是实际上xpath非常强大。
可以参照w3c教程:点我点我。

为了方便使用xpaths,scrapy提供xpathselector 类,有两种可以选择,htmlxpathselector(html数据解析)和xmlxpathselector(xml数据解析)。
必须通过一个 response 对象对他们进行实例化操作。
你会发现selector对象展示了文档的节点结构。因此,第一个实例化的selector必与根节点或者是整个目录有关 。
在scrapy里面,selectors 有四种基础的方法(点击查看api文档):
xpath():返回一系列的selectors,每一个select表示一个xpath参数表达式选择的节点
css():返回一系列的selectors,每一个select表示一个css参数表达式选择的节点
extract():返回一个unicode字符串,为选中的数据
re():返回一串一个unicode字符串,为使用正则表达式抓取出来的内容

3.3xpath实验
下面我们在shell里面尝试一下selector的用法。
实验的网址:http://www.dmoz.org/computers/programming/languages/python/books/

熟悉完了实验的小白鼠,接下来就是用shell爬取网页了。
进入到项目的顶层目录,也就是第一层tutorial文件夹下,在cmd中输入:

代码如下:

scrapy shell http://www.dmoz.org/computers/programming/languages/python/books/

回车后可以看到如下的内容:

在shell载入后,你将获得response回应,存储在本地变量 response中。
所以如果你输入response.body,你将会看到response的body部分,也就是抓取到的页面内容:

或者输入response.headers 来查看它的 header部分:

现在就像是一大堆沙子握在手里,里面藏着我们想要的金子,所以下一步,就是用筛子摇两下,把杂质出去,选出关键的内容。
selector就是这样一个筛子。
在旧的版本中,shell实例化两种selectors,一个是解析html的 hxs 变量,一个是解析xml 的 xxs 变量。
而现在的shell为我们准备好的selector对象,sel,可以根据返回的数据类型自动选择最佳的解析方案(xml or html)。
然后我们来捣弄一下!~
要彻底搞清楚这个问题,首先先要知道,抓到的页面到底是个什么样子。
比如,我们要抓取网页的标题,也就是这个标签:

可以输入:

代码如下:

sel.xpath(‘//title’)

结果就是:

这样就能把这个标签取出来了,用extract()和text()还可以进一步做处理。
备注:简单的罗列一下有用的xpath路径表达式:
表达式 描述
nodename 选取此节点的所有子节点。
/ 从根节点选取。
// 从匹配选择的当前节点选择文档中的节点,而不考虑它们的位置。
. 选取当前节点。
.. 选取当前节点的父节点。
@ 选取属性。
全部的实验结果如下,in[i]表示第i次实验的输入,out[i]表示第i次结果的输出(建议大家参照:w3c教程):

代码如下:

in [1]: sel.xpath(‘//title’)
out[1]: []

in [2]: sel.xpath(‘//title’).extract()
out[2]: [u’open directory – computers: programming: languages: python: books’]

in [3]: sel.xpath(‘//title/text()’)
out[3]: []

in [4]: sel.xpath(‘//title/text()’).extract()
out[4]: [u’open directory – computers: programming: languages: python: books’]

in [5]: sel.xpath(‘//title/text()’).re(‘(\w+):’)
out[5]: [u’computers’, u’programming’, u’languages’, u’python’]

当然title这个标签对我们来说没有太多的价值,下面我们就来真正抓取一些有意义的东西。
使用火狐的审查元素我们可以清楚地看到,我们需要的东西如下:

我们可以用如下代码来抓取这个标签:

代码如下:

sel.xpath(‘//ul/li’)

从标签中,可以这样获取网站的描述:

代码如下:

sel.xpath(‘//ul/li/text()’).extract()

可以这样获取网站的标题:

代码如下:

sel.xpath(‘//ul/li/a/text()’).extract()

可以这样获取网站的超链接:

代码如下:

sel.xpath(‘//ul/li/a/@href’).extract()

当然,前面的这些例子是直接获取属性的方法。
我们注意到xpath返回了一个对象列表,
那么我们也可以直接调用这个列表中对象的属性挖掘更深的节点
(参考:nesting selectors andworking with relative xpaths in the selectors):
sites = sel.xpath(‘//ul/li’)
for site in sites:
title = site.xpath(‘a/text()’).extract()
link = site.xpath(‘a/@href’).extract()
desc = site.xpath(‘text()’).extract()
print title, link, desc

3.4xpath实战
我们用shell做了这么久的实战,最后我们可以把前面学习到的内容应用到dmoz_spider这个爬虫中。
在原爬虫的parse函数中做如下修改:

代码如下:

from scrapy.spider import spider
from scrapy.selector import selector

class dmozspider(spider):
name = “dmoz”
allowed_domains = [“dmoz.org”]
start_urls = [
“http://www.dmoz.org/computers/programming/languages/python/books/”,
“http://www.dmoz.org/computers/programming/languages/python/resources/”
]

def parse(self, response):
sel = selector(response)
sites = sel.xpath(‘//ul/li’)
for site in sites:
title = site.xpath(‘a/text()’).extract()
link = site.xpath(‘a/@href’).extract()
desc = site.xpath(‘text()’).extract()
print title

注意,我们从scrapy.selector中导入了selector类,并且实例化了一个新的selector对象。这样我们就可以像shell中一样操作xpath了。
我们来试着输入一下命令运行爬虫(在tutorial根目录里面):

代码如下:

scrapy crawl dmoz

运行结果如下:

果然,成功的抓到了所有的标题。但是好像不太对啊,怎么top,python这种导航栏也抓取出来了呢?
我们只需要红圈中的内容:

看来是我们的xpath语句有点问题,没有仅仅把我们需要的项目名称抓取出来,也抓了一些无辜的但是xpath语法相同的元素。
审查元素我们发现我们需要的具有的属性,
那么只要把xpath语句改成sel.xpath(‘//ul[@]/li’)即可
将xpath语句做如下调整:

代码如下:

from scrapy.spider import spider
from scrapy.selector import selector

class dmozspider(spider):
name = “dmoz”
allowed_domains = [“dmoz.org”]
start_urls = [
“http://www.dmoz.org/computers/programming/languages/python/books/”,
“http://www.dmoz.org/computers/programming/languages/python/resources/”
]

def parse(self, response):
sel = selector(response)
sites = sel.xpath(‘//ul[@]/li’)
for site in sites:
title = site.xpath(‘a/text()’).extract()
link = site.xpath(‘a/@href’).extract()
desc = site.xpath(‘text()’).extract()
print title

成功抓出了所有的标题,绝对没有滥杀无辜:

3.5使用item
接下来我们来看一看如何使用item。
前面我们说过,item 对象是自定义的python字典,可以使用标准字典语法获取某个属性的值:

代码如下:

>>> item = dmozitem()
>>> item[‘title’] = ‘example title’
>>> item[‘title’]
‘example title’

作为一只爬虫,spiders希望能将其抓取的数据存放到item对象中。为了返回我们抓取数据,spider的最终代码应当是这样:

代码如下:

from scrapy.spider import spider
from scrapy.selector import selector

from tutorial.items import dmozitem

class dmozspider(spider):
name = “dmoz”
allowed_domains = [“dmoz.org”]
start_urls = [
“http://www.dmoz.org/computers/programming/languages/python/books/”,
“http://www.dmoz.org/computers/programming/languages/python/resources/”
]

def parse(self, response):
sel = selector(response)
sites = sel.xpath(‘//ul[@]/li’)
items = []
for site in sites:
item = dmozitem()
item[‘title’] = site.xpath(‘a/text()’).extract()
item[‘link’] = site.xpath(‘a/@href’).extract()
item[‘desc’] = site.xpath(‘text()’).extract()
items.append(item)
return items

4.存储内容(pipeline)
保存信息的最简单的方法是通过feed exports,主要有四种:json,json lines,csv,xml。
我们将结果用最常用的json导出,命令如下:

代码如下:

scrapy crawl dmoz -o items.json -t json

-o 后面是导出文件名,-t 后面是导出类型。
然后来看一下导出的结果,用文本编辑器打开json文件即可(为了方便显示,在item中删去了除了title之外的属性):

因为这个只是一个小型的例子,所以这样简单的处理就可以了。
如果你想用抓取的items做更复杂的事情,你可以写一个 item pipeline(条目管道)。
这个我们以后再慢慢玩^_^

以上便是python爬虫框架scrapy制作爬虫抓取网站内容的全部过程了,非常的详尽吧,希望能够对大家有所帮助,有需要的话也可以和我联系,一起进步

Posted in 未分类

发表评论