最近使用python开发web程序,一直使用的是fastcgi模式.然后每个进程中启动多个线程来进行请求处理.这里有一个问题就是需要保证每个请求响应时间都要特别短,不然只要多请求几次慢的就会让服务器拒绝服务,因为没有线程能够响应请求了.平时我们的服务上线都会进行性能测试的,所以正常情况没有太大问题.但是不可能所有场景都测试到.一旦出现就会让用户等好久没有响应.部分不可用导致全部不可用.后来转换到了coroutine,python 下的greenlet.所以对它的实现机制做了一个简单的了解. 每个greenlet都只是heap中的一个python object(pygreenlet).所以对于一个进程你创建百万甚至千万个greenlet都没有问题.
typedef struct _greenlet {
pyobject_head
char* stack_start;
char* stack_stop;
char* stack_copy;
intptr_t stack_saved;
struct _greenlet* stack_prev;
struct _greenlet* parent;
pyobject* run_info;
struct _frame* top_frame;
int recursion_depth;
pyobject* weakreflist;
pyobject* exc_type;
pyobject* exc_value;
pyobject* exc_traceback;
pyobject* dict;
} pygreenlet;
每一个greenlet其实就是一个函数,以及保存这个函数执行时的上下文.对于函数来说上下文也就是其stack..同一个进程的所有的greenlets共用一个共同的操作系统分配的用户栈.所以同一时刻只能有栈数据不冲突的greenlet使用这个全局的栈.greenlet是通过stack_stop,stack_start来保存其stack的栈底和栈顶的,如果出现将要执行的greenlet的stack_stop和目前栈中的greenlet重叠的情况,就要把这些重叠的greenlet的栈中数据临时保存到heap中.保存的位置通过stack_copy和stack_saved来记录,以便恢复的时候从heap中拷贝回栈中stack_stop和stack_start的位置.不然就会出现其栈数据会被破坏的情况.所以应用程序创建的这些greenlet就是通过不断的拷贝数据到heap中或者从heap中拷贝到栈中来实现并发的.对于io型的应用程序使用coroutine真的非常舒服. 下面是greenlet的一个简单的栈空间模型(from greenlet.c)
a pygreenlet is a range of c stack addresses that must be
saved and restored in such a way that the full range of the
stack contains valid data when we switch to it.
stack layout for a greenlet:
| ^^^ |
| older data |
| |
stack_stop . |_______________|
. | |
. | greenlet data |
. | in stack |
. * |_______________| . . _____________ stack_copy + stack_saved
. | | | |
. | data | |greenlet data|
. | unrelated | | saved |
. | to | | in heap |
stack_start . | this | . . |_____________| stack_copy
| greenlet |
| |
| newer data |
| vvv |
下面是一段简单的greenlet代码.
from greenlet import greenlet
def test1():
print 12
gr2.switch()
print 34
def test2():
print 56
gr1.switch()
print 78
gr1 = greenlet(test1)
gr2 = greenlet(test2)
gr1.switch()