linux编程之序列化存储python对象(上)

什么是持久性?

持久性的基本思想很简单。假定有一个 python 程序,它可能是一个管理日常待办事项的程序,您希望在多次执行这个程序之间可以保存应用程序对象(待办事项)。换句话说,您希望将对象存储在磁盘上,便于以后检索。这就是持久性。要达到这个目的,有几种方法,每一种方法都有其优缺点。

例如,可以将对象数据存储在某种格式的文本文件中,譬如 csv 文件。或者可以用关系数据库,譬如 gadfly、mysql、postgresql 或者 db2。这些文件格式和数据库都非常优秀,对于所有这些存储机制,python 都有健壮的接口。

这些存储机制都有一个共同点:存储的数据是独立于对这些数据进行操作的对象和程序。这样做的好处是,数据可以作为共享的资源,供其它应用程序使用。缺点是,用这种方式,可以允许其它程序访问对象的数据,这违背了面向对象的封装性原则 — 即对象的数据只能通过这个对象自身的公共(public)接口来访问。

另外,对于某些应用程序,关系数据库方法可能不是很理想。尤其是,关系数据库不理解对象。相反,关系数据库会强行使用自己的类型系统和关系数据模型(表),每张表包含一组元组(行),每行包含具有固定数目的静态类型字段(列)。如果应用程序的对象模型不能够方便地转换到关系模型,那么在将对象映射到元组以及将元组映射回对象方面,会碰到一定难度。这种困难常被称为阻碍性不匹配(impedence-mismatch)问题。

对象持久性

如果希望透明地存储 python 对象,而不丢失其身份和类型等信息,则需要某种形式的对象序列化:它是一个将任意复杂的对象转成对象的文本或二进制表示的过程。同样,必须能够将对象经过序列化后的形式恢复到原有的对象。在 python 中,这种序列化过程称为 pickle,可以将对象 pickle 成字符串、磁盘上的文件或者任何类似于文件的对象,也可以将这些字符串、文件或任何类似于文件的对象 unpickle 成原来的对象。我们将在本文后面详细讨论 pickle。

假定您喜欢将任何事物都保存成对象,而且希望避免将对象转换成某种基于非对象存储的开销;那么 pickle 文件可以提供这些好处,但有时可能需要比这种简单的 pickle 文件更健壮以及更具有可伸缩性的事物。例如,只用 pickle 不能解决命名和查找 pickle 文件这样的问题,另外,它也不能支持并发地访问持久性对象。如果需要这些方面的功能,则要求助类似于 zodb(针对 python 的 z 对象数据库)这类数据库。zodb 是一个健壮的、多用户的和面向对象的数据库系统,它能够存储和管理任意复杂的 python 对象,并支持事务操作和并发控制。(请参阅参考资料,以下载 zodb。)令人足够感兴趣的是,甚至 zodb 也依靠 python 的本机序列化能力,而且要有效地使用 zodb,必须充分了解 pickle。

另一种令人感兴趣的解决持久性问题的方法是 prevayler,它最初是用 java 实现的(有关 prevaylor 方面的 developerworks 文章,请参阅参考资料)。最近,一群 python 程序员将 prevayler 移植到了 python 上,另起名为 pypersyst,由 sourceforge 托管(有关至 pypersyst 项目的链接,请参阅参考资料)。prevayler/pypersyst 概念也是建立在 java 和 python 语言的本机序列化能力之上。pypersyst 将整个对象系统保存在内存中,并通过不时地将系统快照 pickle 到磁盘以及维护一个命令日志(通过此日志可以重新应用最新的快照)来提供灾难恢复。所以,尽管使用 pypersyst 的应用程序受到可用内存的限制,但好处是本机对象系统可以完全装入到内存中,因而速度极快,而且实现起来要比如 zodb 这样的数据库简单,zodb 允许对象的数目比同时在能内存中所保持的对象要多。

既然我们已经简要讨论了存储持久对象的各种方法,那么现在该详细探讨 pickle 过程了。虽然我们主要感兴趣的是探索以各种方式来保存 python 对象,而不必将其转换成某种其它格式,但我们仍然还有一些需要关注的地方,譬如:如何有效地 pickle 和 unpickle 简单对象以及复杂对象,包括定制类的实例;如何维护对象的引用,包括循环引用和递归引用;以及如何处理类定义发生的变化,从而使用以前经过 pickle 的实例时不会发生问题。我们将在随后关于 python 的 pickle 能力探讨中涉及所有这些问题。

发表评论